Path optimization for nonholonomic systems : application to reactive obstacle avoidance and path planning
نویسندگان
چکیده
This paper presents a method of path optimization for nonholonomic systems. This method consists in iteratively modifying a given feasible path in order to make a cost related to the path decrease. The paper presents two main applications of this method: the first one is an algorithm that solves the problem of path planning for complex kinematic systems (i. e. trucks with two trailers) in extremely constrained environments. The second one is an application in mobile robotics and addresses the problem of reactive trajectory deformation for nonholonomic mobile robots (i. e. a cart towing a trailer) in order to avoid unexpected obstacles, and cope with map uncertainty and localization errors.
منابع مشابه
Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems
This paper deals with nonholonomic motion planning including obstacle avoidance capabilities. We show that the methods developed in absence of obstacles can be extended to the problem of obstacle avoidance, provided that they verify a topological property. Such steering methods allow us to design exact and complete collision-free path planners for a large family of systems. We show that the ste...
متن کاملDesigning Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network
In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...
متن کاملCentralized Path Planning for Multi-aircraft in the Presence of Static and Moving Obstacles
This article proposes a new approach for centralized path planning of multiple aircraft in presence of the obstacle-laden environment under low flying rules. The problem considers as a unified nonlinear constraint optimization problem. The minimum time and control investigate as the cost functions and the maximum velocity and power consider as the constraints. The pseudospectral method applies ...
متن کاملFormalizing Behavior-based Planning for Nonholonomic Robots
In this paper we present a formalization of behavior-based planning for nonholonomic robotic systems. This work provides a framework that integrates features of reactive planning models with modern control-theory-based robotic approaches in the area of path-planning for nonholonomic robots. In particular, we introduce a motion description language, MDLe, that provides a formal basis for robot p...
متن کاملOn Path Planning and Obstacle Avoidance for Nonholonomic Platforms with Manipulators
A planning methodology for nonholonomic mobile platforms with manipulators in the presence of obstacles is developed that employs smooth and continuous functions such as polynomials. The method yields admissible input trajectories that drive both the manipulator and the platform to a desired configuration and is based on mapping the nonholonomic constraint to a space where it can be satisfied t...
متن کامل